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THE ADMITTANCE OF AN INFINITE SLOT 
RADIATING INTO A LOSSY HALF-SPACE 

I. INTRODUCTION 

One method of measuring the properties of a plasma around a re- 
entry vehicle is to measure the admittance of an  antenna which radiates 
in the presence of the plasma. 
mation is needed relating the admittance of the antenna to the plasma 
properties. 

To interpret  such measurements, infor- 

The problem of a dipole radiating into a lossy medium has been 

To the author's 

.Ir -.- 
discussed by a number of authors. 
antenna and the biconical antenna have been studied..'. 
howiedge however, no work has been done to date on the admittanc.es of 

\aper ture  antennas radiating into lossy media# Since the aperture antenna 
is one of the most practical types for actual experiments, it is felt that a 
need exists for information on its properties. 

Also, the properties of the loop 
.Ir 
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In this report, the admittance of an infinite slot radiating into a 
The slot is assumed to be an opening in lossy half-space is derived. 

an  infinitely conducting ground sheet. 
infinite region which is homogeneous and isotropic and has free-space 
permeability and arbi t rary permittivity and conductivity. 

Outside the slot there is a semi- 

The electric field in the slot is assumed to have the form of the 
The admittance per  unit TEM parallel-plate transmission line mode. 

length of the slot is  then calculated f rom the complex power flowing 
through the slot. 
dimension, the frequency, and the constitdive parameters of the lossy 
region . 

The admittance is found as a function of the slot 

:: A bibliography of past work is given in: 

"Antennas in Lossy Media, I f  by C .  T. Tai, to be published in the 
Proceedings of the 1963 URSI General Assembly. 
and Reception with Buried and Submerged Antennas, 
IEEE Trans. ,  Vol. AP-11, May 1963. 

See also,  "Radiation 
R .  C. Hansen, 
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Although one obviously cannot put an infinite slot antenna on a 
satellite to make measurements, the results a r e  still useful for  the 
insight they provide. 
to handle analytically because the problem is two-dimensional; and in 
fact ,  as it turns out, the admittance properties of the infinite slot  exhibit 
all the characterist ics of other more practical  geometries. 

The infinite slot is probably the simplest  antenna 

The problem treated here  is intended to serve  as a first approxi- 
mation to the case of an electrically thick plasma slab, 

11. DERIVATION OF RESULTS 

Consider an  infinite slot which opens through a ground sheet into a 
lossy half-space; as shown in Fig. 1. 
the y-direction and has width Itaf1 in the x-direction. 
the xy-plane is infinitely conducting. 

The slot extends infinitelyfar in 
Outside the s lut ,  

r 
-, a/2 

'V 

v = z  J.1 

Fig. 1. Infinite slot in ground plane. 

The half-space z > 0 is assumed to be homogeneous and isotropic, 
and is characterized by a complex propagation constant 

1 

k = [ d p o  E (1 - ik)]' 
L 

where 
k = complex propagation constant 

1691-2 

w = radian frequency 
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p o  = permeability of free-space 

E = permittivity of z > 0 region 

(r= conductivity of z > 0 region. 

MKS units and the time convention etiwt will be used in this report. 

The electric field in  the slot is assumed to have the form of the 
TEM parallel-plate transmission line mode : 

It is easily seen that the electromagnetic fields in this problem a r e  
everywhere TE to the y-axis. Hence the fields may be derived from a 
vector potential of the form 

where + satisfies 

(4) Vz + t kZ 4 = 0 

with appropriate boundary conditions. 
are related to F through 

The electric and magnetic fields 

(5) E = - v x F  

Since the fields also have no y-dependence, the E, and Hy 
components are given by 

E , = + -  a +  
a Z  

(7) 

1691-2 3 



A solution f o r  + may be constructed of the form 
a3 

-W 

where 

(10) k z =  4- 
and the root is chosen so that 

corresponding to propagation in  

E, i s  then given by 

W 

1 
E,(x,z) = - 

he tz-direction. 

-ikzz -ikxX 
-ik,f(k,) e e dk, 9 

o r  in the z = 0 plane 

a3 

E,(x,o) = - 
2Tr 

-a3 

- ik,x 
-ikzf(Q) e *x 

The function f(k,) is then found by taking the inverse t ransform: 

a3 

tik,x 
(15) -ikz f(kx) = r E,(x,o) e d x .  

J 
"W 

Using ( 2 ) ,  this gives 
a 

a 
2 

-- 
or 

1691-2 4 
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Thus the solution for JI ia: 

00 

ccl(x,z) = - 1 I& .in(?) e-ikzz e -i&x ak, Y 

21T 
-W 

and finally Ex and Hy a r e  given by (7) and ( 8 )  as 

-W 

- ( i w E  t (r) 00 

Hy(x,4  = 
21T 

-00 

The complex power flowing through the aperture per  unit length (per 
meter) in the y-direction is given by 

-- a 
where the asterick denotes 2 the complex conjugate. 

The admittance per unit length is then given by 
* 

2P- 
(22) Y =  

I V l Z  

where V is the aperture voltage. 

F rom (19) and (20), 

1691-2 

00 

Ex(x,o) = - 1 1 - 2 sin(?) e - iQx % 
21T kx 

--oo 

W 

2(0  E - i (r) 
a x  Hy(x,o) = - 

21T 
-W 
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a 
Since Ex(x,o) is zero fo r  1x1 > - 2 , the limits of integration in (21) 

can be extended to infinity. 
making use of Parseval 's  Theorem" gives f o r  P"', 

Then substituting (23)  and (24) in (21) and 

Now the integrand may be rearranged and ParseVal's Theorem may 
be used again. Let 

f, (kx) = 2 1 sin2 (F) 
kX 

The transform of f,  (kx) is given by: 

03 

-ikxx dkx 
1 F, (x) = - 
2rr 

-03 

:% F o r  the transform pairs  
00 

Parseval 's  Theorem is:  

03 00 

1691-2 6 
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The transform of fz  (k,) is 

1 - ikxx 
dkX Fz (x) = - 

2a 

(34) 

Then Parseval ' s  Theorem gives 

m m 

-a 

Since the integrand is an even function of x ,  this may be written 

(35 1 

* The integral in (29) is derived in: 

R .  T. Compton, J r . ,  
guide Radiating into a Lossy Half-space, " Report 1691-1, Antenna Labo- 
ratory (In preparation). 

"The Aperture Admittance of a Rectangular Wave- 
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The aperture voltage V is numerically equal to  a.  Hence from (22), 
the aperture admittance is given by: 

w ~ - i @  a 
Y =  1 (a-x) HL2)(kx) dx 

a2 0 

(36) 

It is convenient at this point to normalize (36 
free-space constants. Let 

with respect to the 

(37 )  

be the free-space propagation constant, where Eo is the permittivity of 
free-space and X 
Also let 

is the free-space wavelength for  the frequency w'. 

be the characteristic admittance of free-space and define 

(39 )  q = kox 

(40) A = koa 

Then (36) may be written in the form 

16 91- 2 
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where q H!’)(& .)I is understood to  mean 
q =  0 

F o r  small  p ,  

where y = 1.781, and thus 

I- 1 

Therefore (41) becomes: 

Finally, with the substitution 

k - i+ (47) - = C e  
kO 

1691-2 9 



(46) becomes 

As a check on the algebra, it may be seen that Y has the correct  
dimensions. A, C, and the integral a r e  dimensionless.. Hence Y 
has the dimensions of kayo, i .e  . , mhos pe r  me te r .  

Let 
X 

(49) I H2 (x, a) = 1 H F )  ($e+ia) dc 

0 

2 
Then Y, normalized to  (koyolA ), is given by 

1691-2 10 
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* Equation (50) has been evaluated for 0 < CA < 10 and Oo < 4 < YO0, 
and is shown in Fig.  2 .  It i s  convenient to plot the Gormalizedquantity 

, since then only one curve need be drawn for all apertures.  A' y -- 
ko Yo 

* The function I Hz (x, a), and also the integrals 

X 

tia 
I J ( x D ~ )  = lo Jo(6 e 1 d6 

have been tabulated by the author for 0 < x < 10.0, -90° < a < 90°, and 
will be published in a forthcoming A n t e g a  Laboratory rzpor;. 

The values of €€:')(z) for complex z were obtained from the 
following two tables: 

(a) "Table of the Bessel Functions Jo(z) and J i (z)  for Complex 
Arguments, ' I  Mathematical Tables Project, National Bureau of Standards, 
Columbia University P r e s s ,  New York, 1943. 

(b) "Table of the Bessel Functions Y,(z) and Yl(z) for Complex 
Arguments* " National Bureau of Standards, Columbia University Press, 
New York, 1950. 

1691- 2 11 



2 Y = G + i B  
k - i+ - = C e  

A S  
k o  Yo + k 0  
2 I I I I I I 

40’ I I I I I 1 

A‘ Y Fig. 2. The normalized admittance - - . 
k, yo 
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F o r  a fixed aperture size and fixed frequency, Fig.  2 shows the 
behavior of the admittance Y as  a function of C, and hence as a function 
of E and u. * 

If one is interested in the admittance of the slot as a function of the 
slot dimension A, the shape of the curves in Fig. 2 is misleading because 
of the factor AZ in the normalizing constant for Y. This difficulty may 
be remedied by using the data of F ig .  2 to  plot the quantity Y/koyo as a 
function of A (and +) for fixed C. 

F o r  example, suppose we let C = 1. (Then = Oo corresponds to  
free-space outside the aperture.)  
A, the normalized admittance has the behavior shown in Fig. 3. 

Then as a function of aperture size 

Similarly, i f  one is interested in the dependence of Y on frequency 
for a given aperture and a given medium, the factor ko must be removed 
from the normalization constant for Y in the same manner. 

As a check on the numerical resu l t s  shown in Fig. 2,  it is helpful 
to  consider two limiting cases.  First, suppose the semi-infinite region 
has E = @ =  0 so that C = 0. (The point given by CA = 0 in Fig. 2 also 
corresponds to  the d.c .  case, i.e., w = 0, but the interpretation of the 
curves is somewhat tricky near w = 0. This case is discussed below.) 
Then it is clear  from Q. (24) that %(x, 0) E 0 and therefore Y = 0. 
This accounts for the fact that the curves in F ig .  2 approach the origin 
as C - 0 .  

Second, consider the case where C is large (and + f 0). Since the 
. .  

_ L . -  k 
function HA2) (e q) decays rapidly to zero fo r  complex T;- as q 

0 

becomes large, the integral in (48) may be replaced by 

* It is interesting to  note that the admittance of an  infinite slot, as 
shown in Fig.  2, has the same general behavior as the admittance of 
a rectangular aperture radiating into a lossy medium. F o r  curves 
of rectangular aperture admittance, see reference on page 7 
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with little change in value. From the Fourier Transform pair*: 

where 

(53) 

(54) 

it is seen that 

00 

(55) 

Hence for the integral in  (51) w e  substitute 

CA 

Also for large C, 

Making use  of these gives the following approximate form for (48): 

o r  

* See reference on page 7.  
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This behavior is clearly indicated in Fig.  2 .  Comparison of 
Eq. (59) with the curves in Fig.  2 shows that (59) is quite accurate for  
+ > 15O and CA > 7. 

C = l k I =  (61) 

A s  mentioned above, the behavior of Y as a function of frequency 
is somewhat tricky as w " 0 .  f rom (50), we have 

l 2  J" 4 -impo (h€ t (r ) 

16 



YP 
2 

Using (64) and (65) in (60) gives 

(1 t i 
2 - 
T 

2 - 
T 

* T e-i+ +J 
Substituting (61) and (62) in and collecting te rms  gives for  the leading 
t e r m  

Y -  -i  - 
rra 2 

Since 

(68) 

for smal l  w, 

and therefore 

Because 

- - - w  y4-a 
lim Pn 
w +o t 2 

I 
I 
I 

it is seen that Y + t w  as w '0, for any 0- f 0. 

1691-2 17 



If @ =  0,  however, instead of (61) and (62) we use 

(73) C A =  wJIJ.0" a 

in (66). This gives 

2 (74) 

which is an interesting result because 

t m : " # O  

0 : " = o  i (75) lim Y = 
w '0 

This peculiar behavior may be understood by examining carefully 
For  any non- zero conductivity, this te rm the logarithmic term in (66). 

contributes a singularity at w = 0 .  
the frequency must be before this term contributes appreciably to  Y .  
the limit, for @ = 0, the singularity a t  w = 0 disappears.  

The lower the conductivity, the lower 
In 

Finally, it is interesting to make the following observation. 
Suppose the parallel-plate transmission line shown in Fig.  1, instead 
of feeding a semi-infinite half-space, feeds an infinite section of t rans-  
mission line with the same dimensions and with a lossy dielectric between t: 
the plates, as  shown in Fig.  4 .  The characterist ic admittance per  unit 
length in the y-direction of the line for z > 0 is 

I 

The terminating admittance per  unit length, Y ' ,  for  the section of line 
z C 0 is simply Yc . Hence, af ter  some algebra 

I 
I 
I 
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Fig. 4. Infinite transmission line model. 

which is the first term of (59). Thus, except for a constant (i 4 )  , the 
admittance of the slot is correctly given by the model in Fig.  4, for 
large CA. 

111. CONCLUSIONS 

The admittance per  unit length of an  infinite slot radiating into an 
lossy half-space has been found and is shown in F ig .  2 .  Figure 2 is 
best interpreted a s  showing the admittance as a function of E and 0- 
fixed aperture size and fixed frequency. 
size o r  on frequency can be calculated from Fig .  2 A sample curve of 
Y versus aperture size is shown in Fig.  3 for the case C = 1. Also it is 
noted that the behavior of Y near w = 0 is markedly different for @ =  0 
than for (T f 0. 

for 
The dependence of Y on aperture 
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